ALGEBRAIC GEOMETRY–MID SEMESTRAL EXAM B. MATH. III TIME: 3 HOURS

All rings are assumed to be commutative with identity. All the questions carry equal marks. Maximum score is 50.

You are allowed to bring a single page of notes.

- (1) (i) Let A be a ring such that A[x] is a Noetherian ring. Is A Noetherian ?
 - (ii) Let *A* be a ring and let *I* be an ideal of *A*. If *I* is free as an *A*-module, then what are its possible ranks ?
 - (iii) Let C be the ring of continuous real valued functions on [0, 1]. Is C Noetherian ?
 - (iv) Let $A \to B$ be a ring homomorphism and let \mathfrak{p} be a prime ideal of A. Then \mathfrak{p} is the contraction of a prime ideal of B if and only if $\mathfrak{p}^{ec} = \mathfrak{p}$.
- (2) Let *M* be a free module over *A* with basis $\{e_1, \dots, e_n\}$. Let $x = \sum_{i=1}^n a_i e_i$ be an element of *M*, where $a_i \in A$ for all *i*, such that there exists $b_i \in A$, $1 \le i \le n$ for which we have $\sum_{i=1}^n a_i b_i = 1$. Show that there exists a basis for *M* which contains *x* as a member.
- (3) (i) Let *B* be an *A*-algebra and let *N* be a *B*-module. Regarding *N* as an *A*-module by restriction of scalars, form the *B*-module N_B = B ⊗_A N. Show that the homomorphism θ : N → N_B which maps y to 1 ⊗ y is injective and that θ(N) is a direct summand of N_B.
 - (ii) Let *B* be a flat *A*-algebra. Suppose that for any non-zero *A*-module *M*, we have $M_B = B \otimes_A M \neq 0$. Then show that for every *A*-module *M*, the mapping $x \mapsto 1 \otimes x$ of *M* into M_B is injective.
- (4) (i) Let *I* be a finitely generated ideal of *A* such that *A*/*I* is a Noetherian ring. Suppose that *I* is nilpotent as an ideal. Show that *A* is a Noetherian ring.
 - (ii) *k* be a field and let *K* be its algebraic closure. Show that there is a 1 1 correspondence between *k*-algebra homomorphisms $f : k[x_1, \dots, x_n] \to K$ and tuples $(a_1, \dots, a_n) \in L^n$ where *L* is some finite algebraic extension of *k* (which depends on the map *f*).
- (5) Let A be a Noetherian ring, B a finitely generated A-algebra, G a finite group of Aautomorphisms of B, and B^G the set of all elements of B which are left fixed by every element of G. Show that B^G is a finitely generated A-algebra.
- (6) Let *f* : *M* → *N* be a homomorphism of *A*-modules, where *M* and *N* are both Noe-therian *A*-modules. Assume that for some prime ideal p of *A*, *f*_p is an isomorphism. Show that there exists some *s* ∈ *A* − p such that *f_s* is an isomorphism.

STATISTICS AND MATHEMATICS UNIT, INDIAN STATISTICAL INSTITUTE,, BANGALORE, INDIA-560059 *E-mail address*: souradeep_vs@isibang.ac.in